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Abstract

Tubular T-joints are structural discontinuities that can be easily involved with stress concentrations. It is therefore
necessary to estimate an internal stress distribution of T-joints. However, the complicated residual stresses are
unavoidably produced adjacentto the joints by welding. In this paper, the residual stress distributions in welded tubular
T-joints were analyzed by using a three-dimensional non-steady heat conduction analysis and a three-dimensional
thermal elastic-plastic analysis. Characteristics of the residual stress distribution in welded tubular T-joints are
investigated by the thermal-mechanical analysisresults.
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1. Introduction

Steel structures, i.e. offshore structures, buried
pipelines and steel trusses, consist of a large number
of tubular members joined by the welding process.
Tubular members are joined in a variety of geo­
metrical forms such as T-type by welding. Tubular T­
joints are structural discontinuities that can be easily
encountered into stress concentrations. It is therefore
necessary to estimate an internal stress distribution of
the T-joints for safe construction of the welded
structures. However, welding residual stresses are
unavoidably produced at the welding joints as results
of weld pool solidification, phase transformation and
plastic deformation during welding. Furthermore, the
distribution of welding residual stress is too com­
plicated as affected by geometry of joints, weld
conditions and etc. And the residual stresses in the
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tubular members are one of the important problems
concerning with the buckling strength, the fatigue
strength, crack propagation and so on [1-6]. It is
therefore necessary to investigate the characteristics
of the residual stress distribution in the welded tubular
T-joints.

In this paper, characteristics of the residual stress
distributions in welded tubular T-joints were inves­
tigated by an analytical approach. The residual stress
distributions in welded tubular T-joints were com­
puted by using an uncoupled three-dimensional
thermal-mechanical finite element analysis. Thermal­
mechanical analyses were sequentially performed; a
three-dimensional non-steady heat conduction analy­
sis and a three-dimensional thermal elastic-plastic
analysis, respectively. In thermal-mechanical analyses,
temperature-dependent thermo-physical and mecha­
nical properties of the base metal used in the tubular
members and weld metal were considered. Charac­
teristics of the residual stress distribution in welded
tubular T-joints are investigated by the thermal-
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2. Model for analysis

2.1 Analysis and welding conditions

It is assumed in analyses that round-to-round
tubular members with a thickness of 10 mm and
lengths of 500 mm and 1300 nun, respectively, are
joined by arc welding as shown in Fig. 1 [1]. The
welded joints are manufactured as T-type of round-to­
round tubular joint. Analysis models are divided with
a parameter of the diameter of members; 250 mm,
300 mm and 500 nun as shown in Table 1. In welding
analysis, simple supported condition is applied at the
horizontal member. Fig. I shows dimensions of the
analysis model and observing parts to indicate re­
sidual stress distributions; upper, middle, lower parts
of horizontal member and lateral part of vertical
member.

It was assumed in the welding analysis that one­
pass groove welding was conducted with welding
velocity of 6 mrn/sec, voltage of 30 V, current of 300
A, heat input of 1200 J/mm and heat efficiency of 0.8
[7, 8]. Material used in the tubular members is
SM400, which is a structural steel for Korean
Standards and equivalent to ASTM A527 Gr.42. And
AWS E7l T-I is used for the weld metal. Temper-

Table I. Model for the anal ysis.

Temperature (

(b) Mechanical properties

Fig. 2. Temperature-dependent phy s ica l constants and mecha­
nic al properties of base metal(SM400) and we ld metal(E7 1T­

I) (T.S = tensile stres s, y'S = yield stress).

Fig. 3. Finite element discretization and coordinate system.
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dimensions (unit=mm )
thickness-

Model diameters
length length diameter

members
kh°rizonta (vertical thickness rat io (tID )
member) member)

Wf-250 250 0.040

Wf-300 300 1300 500 10 0.033

Wf-500 500 0.020

Unir-m m

Fig. I . Configurati on of analysis model and observing parts.
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2.2 Thermal-mechanical analysis
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(a) Iso-thermal contour at 223 second

Fig.4(b).
It is known from thermal histories that temperature

of point 1 increases up to approximately 1800 °e,
when welding begins. Subsequently, temperature of
point 1 decreases rapidly up to approximately 160 "C
and re-increases up to approximately 940 "C , when
welding is completed. The temperature of point 2
increases up to approximately 2270 "C at 120 seconds.
Also, the temperature distributions of WT-250 and
WT-500 models showed a similar tendency with that
ofWT-300 model.
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(b) Temperature histories at each point

Fig. 4. Iso-thermal contour and temperature histories of WT­

300 model.

(1){dO'} =: [Dd]{dc} - {c}dT

where [DJ is divided into [D;] for the elastic
range and [D:J for the plastic range, {c} is a
parameter to reflect the stress increment due to the
dependence of the physical and mechanical properties
of the materials on temperature, da is the stress
increment, de is the strain increment and dT is
the temperature increment. And the same finite
element models as used in the thermal analyses are
used in the mechanical analyses as shown in Fig. 3.
Fig. 3 shows a finite element discretization and coor­
dinate system.

The temperature and the thermal stress distribution
are computed using an uncoupled thermo-mechanical
finite element formation to incorporate the thermal
and mechanical analysis. The computation employed
a three-dimensional, eight-node, solid elements in an
entire model and used temperature-dependent thermo­
physical and mechanical properties of the used ma­
terials as shown in Figs. 2(a) and (b) [9-13]. The
thermal analysis is based on the three-dimensional
non-steady heat conduction formulation with the
moving heat input. Thermal and mechanical analyses
are uncoupled and conducted sequentially. First, the
thermal analysis is carried out calculating the tem­
perature distributions during welding. The three­
dimensional thermal elastic-plastic analysis relied on
the thermal analysis results and calculated the stress­
strain distribution on the basis of the temperature
history. The incremental form of stress-strain relation­
ship can be written as

ature-dependent physical constants and mechanical
properties of base and weld metals are shown in Figs.
2(a), (b) [9-13].

3. Analysis results and discussion

3.1 Temperature history

Fig. 4(a) shows an iso-thermal contour ofWT-300
model at 223 seconds, when welding is completed,
obtained by a three-dimensional non-steady heat
conduction analysis. Fig. 4(b) shows thermal histories
at outside element of each observing points. Where
point 1 indicates a welding started element, and point
2 is the middle element on the weld line as shown in

3.2 Residual stress distribution

Figs. 5-8 show the residuals stress distributions of
analysis models, obtained by a three-dimensional
thermal elastic-plastic finite element analysis on the
basis of the temperature histories. The residual stress
distributions are presented at each observing parts as
shown in Fig. 1.
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Upper part - horizontal member
Fig. 5 shows the residual stress distributions of the

upper part-horizontal member on the inside and the
outside surface. Residual stresses of the circumf­
erential direction near the welded T-joint are tensile
on the inside and the outside surfaces in all analysis
models. And the magnitude of stresses on the inside
surface is larger than that on the outside surface. In
case of residual stresses of the axial and the radial
directions, tensile stress distributions show on the
inside surface. On the outer surface, residual stresses
near the welded T-joint are compressive. This dif-

ference of the residual stress distributions is due to
geometry change during welding depending on ther­
mal shrinkage [14]. The maximum residual stress
occurs at the circumferentialdirection of the WT-250
model on the inside surface with a value of
approximately400 MPa.

Middle part - horizontal member

Fig. 6 shows the residual stress distributions of the
middle part-horizontal member on the inside and the
outside surface. All residual stress distributions of
analysis models show a similar tendency on the inside
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Fig. 5. Residual stress distribution of upper part-horizontal member on the inner and the outer surfaces.
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Fig. 6. Residual stress distribution of middle part-horizontal member on the inner and the outer surfaces.
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Fig. 7. Residual stress distribution of lower part-horizontal member I on the inner and the outer surfaces.
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Fig. 8_ Residual stress distributions of lateral part-vertical member on the inner and the outer surfaces.

and the outside surface. The residual stresses near
welded T-joint are tensile in all analysis models. The
residual stresses of the axial direction are larger than
those of other directions. And the residual stresses on
the inside surface are relatively larger than those on
the outside surface. It is seen from this tendency that
production of the residual stress at the middle part ­
horizontal member is mainly dependent on the
thermal history [14].

Lowerpart - horizontal member
Fig. 7 shows the residual stress distributions of the

lower part-horizontal member on the inside and the
outside surface. The residual stresses of the
circumferential and the axial directions near welded
T-joint are tensile, and these magnitude do not exceed
approximately 50 MPa and 100 MPa, respectively. In
case of the residual stresses of the radial direction,
insignificant value is observed in an overall region.

Lateral part - vertical member
Fig. 8 shows the residual stress distributions of the

lateral part-vertical member on the inside and the
outside surface. The residual stress distributions of the
lateral part-vertical member are similar with those of
the upper part-horizontal member in respect of the
magnitude and the tendency. It is known therefore
that production mechanism of residual stress at the
lateral part-vertical member is equal to that at the
upper part-horizontal member consequently.

4. Conclusions

In this paper, characteristics of the residual stress
distribution in welded tubular T-joints are presented
by a three-dimensional thermal-mechanical finite
element analysis considering temperature-dependent

physical constants and mechanical properties of the
base metal (SM400) used in the tubular members and
weld metal (E7lT-l). And conclusions can be
swnmarized as follows;

It is concluded from three-dimensional non-steady
heat conduction analyses that temperature distribution
on the weld line increases up to approximately
940 -2270 during welding.

Residual stresses of the circmnferential direction of
the upper part-horizontal member near the welded T­
joint are tensile on the inside and the outside surfaces.
And the residual stresses of the axial and the radial
directions are tensile on the inside surface. However,
on the outer surface, residual stresses near the welded
T-joint are compressive. This is due to geometry
change during welding depending on thermal shrin­
kage.

All residual stress distributions of the middle part­
horizontal member show a similar tendency on the
inside and the outside surface. And residual stresses
on the inside surface are relatively larger than those
on the outside surface.

The residual stresses of the circmnferential and the
axial directions of the lower part-horizontal member
near welded T-joint are tensile, and the residual
stresses of the radial direction are insignificant.

The residual stress distributions of the lateral part­
vertical member are similar with those of the upper
part-horizontal member in respect of the magnitude
and the tendency. It is concluded therefore that
production mechanism of residual stress at the lateral
part-vertical member is equal to that at the upper
part-horizontal member.
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